

CONCEPTUAL DRAINAGE CALCULATIONS

Biscayne Park - Phase 1A Drainage Design Criteria Package $\text{(NE } \mathbf{1}\mathbf{1}^{\mathsf{TH}} \mathsf{AVENUE} \text{)}$

Village of Biscayne Park, Florida

Prepared For:

Village of Biscayne Park

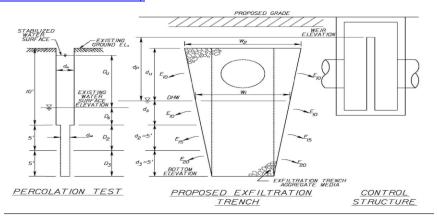
Prepared By:

August 2021

(NE 11 AVE)

DESIGN ELEVATIONS:

Weir Elevation/control elevation = 2 ft NGVD ft


Existing Grade Elevation = 3 NGVD

Design High Water Elevation (DHW) = 1.8 ft NGVD (October Water Table Elevation)

Top of Trench Elevation = 1.8 ft NGVD

Bottom of Trench Elevation = -12.00 ft NGVDUnsaturated Trench depth (d_u) = 0 ft

EXFILTRATION RATE CALCULATIONS):

The design high water elevation and the control elevation are within the aggregate

media. E_t =Total exfiltration rate per foot of trench, cfs/LF For 15-ft deep exfiltration trench:

 E_t = 2 K_{10} [du (dp - du/2) + ds dp] + 2 dp d₂ K_{15}

K ₁₀ =	Hydraulic Conductivity at 10 ft depth=	1.88E-03 cfs/ft²/ft of
K ₁₅ =	Hydraulic Conductivity at 15 ft depth =	1.88E-03 head cfs/ft ² /ft
d1 =	Depth of Trench within 10 ft stratum =	8.80 ofhead ft
d2 =	Depth of Trench within 10-15 foot Stratum =	5 ft
$d_p =$	Hydraulic Head on Exfiltration trench =	0.2 ft
$d_u =$	Depth of the Unsaturated Zone=	0 ft
ds =	Depth of the Saturated Zone=	8.80 ft
E _t =	Total exfiltration rate per LF of trench (Calculated) =	0.0104 cfs/LF
$\mathbf{E_t} =$	Total exfiltration rate per LF of trench (Design) =	0.0104 cfs/LF

(NE 11 AVE)

EXFILTRATION LENGTH CALCULATIONS:

According to the Florida Department of Transportation - District 6 Exfiltration Trench Reference Manual, January 2008 - Ver. 1.08, the Minimum Exfiltration Length Required to meet the Water Quality and Quantity for the design storm shall satisfy the following equations:

$$S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln (t))^3] t$$
Equation 3.3-10 $E_t L = C A_{area} (A + B [ln (t) + 1] + C ln (t) [ln (t) + 2] + D ln (t)^2 [ln (t) + 3]$ Equation 3.3-11

Where:

S = Storage in trench, ft^3 per LF of trench S = $(Wd_u - A - A_s) \times 0.5 + (A - A_s)$

 $S = (Wd_u - [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]) \times 0.5 + [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]$

S = Storage in trench per LF of trench =	0.000	ft ³ /LF
A _s = Submerged area of pipe =	1.767	ft ²
A = Available Storage area in perforated pipe =	1.767	ft ²
D = Diameter of perforated pipe =	1.5	ft
W = Average trench width =	4	ft

T_t = Time to generate one inch of runoff plus the time of concentration

 T_t = Time to generate one inch of runoff plus the time of concentration

```
T<sub>t</sub>=
                                                                                   (2940 F^{-0.11})/(308.5C-60.5(0.5895 + F^{-0.67}))
               T<sub>1"</sub> = Time to generate 1" of runoff, minutes =
                C = Weighted runoff coefficient
                                                                                             0.4 ac
                     Pervious Area (A1)=
                                                                                             0.4 ac
                     Impervious Area (A2)=
                                                                                             0.8 ac
                     Total Area (A3)=
                     Runoff coefficient Pervious (C1) =
                                                                                           0.25
                      Runoff coefficient Impervious (C2) =
                                                                                           0.95
                  C = [(A1 \times C1) + (A2 \times C2)] / A =
                                                                                          0.600
                                                                                           0.48 ac
                    <sub>a</sub> = Total Tributary Area = C x A3 =
                 F = Design Storm Frequency =
                                                                                               5 Year
                                                                                          19.11 Minutes
                T_c = Time of concentration or time to reach 1 inlet =
                                                                                              10 Minutes
```

Per Table 3.3-1 Excerpt of Table T-16 from the FDOT Hydrology Handbook - January 2004:

Within Rainfall Zone 10, in Miami-Dade County for a 10-year storm frequency, the polynomial coefficients

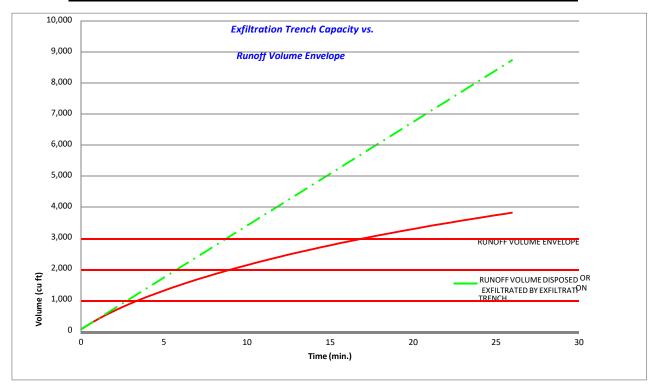
29.11 Minutes

A= 11.1908 B= -0.93165 C= -0.48526 D= 0.05836

Equation 3.3-10: $SL + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3]t$ OR: $L = \{60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3]t\} / (S + 60 E_t T_t)$

Where: L= Length of Exfiltartion Trench, LF

(NE 11 AVE)


Use Excel Solver to find t when $L_{3310} = L_{3311}$

L_{3,3-10} = 536.38 LF L_{3,3-11} = 536.38 LF

 $\mathbf{L}_{3.3-10} - \mathbf{L}_{3.3-11} = 0.00$

t = 0.43 Minutes

LENGTH OF EXFILTRATION TRENCH REQUIRED =	536.38 LF
LENGTH OF EXFILTRATION TRENCH PROVIDED =	591 LF
FACTOR OF SAFETY PROVIDED =	1.10

CONCEPTUAL DRAINAGE CALCULATIONS

Biscayne Park - Phase 1A Drainage Design Criteria Package $\text{(NE 111}^{\text{TH}}\,\text{STREET)}$

Village of Biscayne Park, Florida

Prepared For:

Village of Biscayne Park

Prepared By:

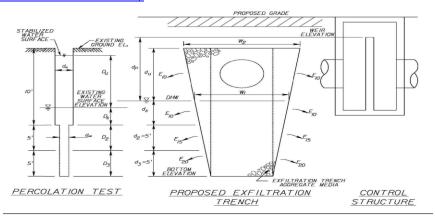
Certificate of Authorization #514

August 2021

(NE 111TH ST)

DESIGN ELEVATIONS:

Weir Elevation/control elevation = 4 ft NGVD ft


Existing Grade Elevation = 4 NGVD

Design High Water Elevation (DHW) = 1.8 ft NGVD (October Water Table Elevation)

Top of Trench Elevation = 3 ft NGVD

Bottom of Trench Elevation = -11.00 ft NGVD
Unsaturated Trench depth (du) = 1.2 ft

EXFILTRATION RATE CALCULATIONS):

The design high water elevation and the control elevation are within the aggregate

media. E_t =Total exfiltration rate per foot of trench, cfs/LF For 15-ft deep exfiltration trench:

 E_t = 2 K₁₀[du (dp - du/2) + ds dp] + 2 dp d₂ K₁₅

K ₁₀ =	Hydraulic Conductivity at 10 ft depth=	1.35E-04 cfs/ft ² /ft of
K ₁₅ =	Hydraulic Conductivity at 15 ft depth =	1.35E-04 head cfs/ft ² /ft
d1 =	Depth of Trench within 10 ft stratum =	9.00 ofhead ft
d2 =	Depth of Trench within 10-15 foot Stratum =	5 ft
$d_p =$	Hydraulic Head on Exfiltration trench =	2.2 ft
$d_u =$	Depth of the Unsaturated Zone=	1.2 ft
ds =	Depth of the Saturated Zone=	7.80 ft
_E,=	Total exfiltration rate per LF of trench (Calculated) =	0.0081 cfs/LF
$\mathbf{E_t} =$	Total exfiltration rate per LF of trench (Design) =	0.0081 cfs/LF

(NE 111TH ST)

EXFILTRATION LENGTH CALCULATIONS:

According to the Florida Department of Transportation - District 6 Exfiltration Trench Reference Manual, January 2008 - Ver. 1.08, the Minimum Exfiltration Length Required to meet the Water Quality and Quantity for the design storm shall satisfy the following equations:

Where:

S = Storage in trench, ft³ per LF of trench

 $S = (Wd_u - A - A_s) \times 0.5 + (A - A_s)$

 $S = (Wd_u - [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]) \times 0.5 + [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]$

S = Storage in trench per LF of trench =	2.400	ft ³ /LF
A _s = Submerged area of pipe =	1.767	ft ²
A = Available Storage area in perforated pipe =	1.767	ft ²
D = Diameter of perforated pipe =	1.5	ft
W = Average trench width =	4	ft

 T_t = Time to generate one inch of runoff plus the time of concentration

 T_t = Time to generate one inch of runoff plus the time of concentration

T _t =	$T_{1"} + T_{c}$	
	$T_{1"}$ = Time to generate 1" of runoff, minutes =	(2940 F ^{-0.11})/ (308.5C-60.5 (0.5895 +
	C = Weighted runoff coefficient	
	Pervious Area (A1)=	0.15 ac
	Impervious Area (A2)=	0.15 ac
	Total Area (A3)=	0.3 ac
	Runoff coefficient Pervious (C1) =	0.25
	Runoff coefficient Impervious (C2) =	0.95
	C = [(A1 x C1) + (A2 x C2)] / A =	0.600
	A _{area} = Total Tributary Area = C x A3 =	0.18 ac
	F = Design Storm Frequency =	5 Year
	T _{1"} =	19.11 Minutes
	T _c = Time of concentration or time to reach 1 inlet =	10 Minutes

Per Table 3.3-1 Excerpt of Table T-16 from the FDOT Hydrology Handbook - January 2004:

Within Rainfall Zone 10, in Miami-Dade County for a 10-year storm frequency, the polynomial coefficients

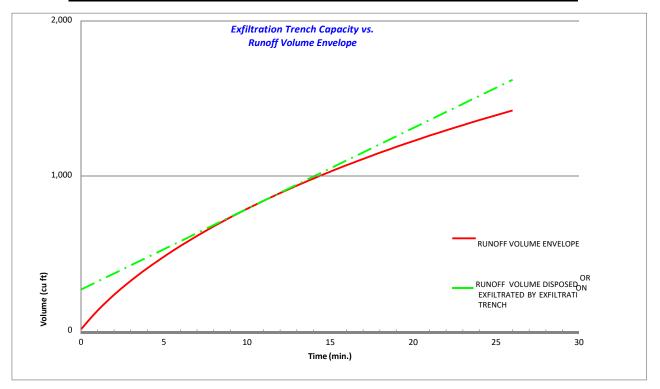
29.11 Minutes

A= 11.1908 B= -0.93165 C= -0.48526 D= 0.05836

Equation 3.3-10: $S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t$ OR: $L = \{60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t \} / (S + 60 E_t T_t)$

Where: L= Length of Exfiltartion Trench, LF

(NE 111TH ST)


Use Excel Solver to find t when $L_{3310} = L_{3311}$

 $L_{3,3-10}$ = 106.75 LF $L_{3,3-11}$ = 106.75 LF

 $\mathbf{L}_{3.3-10} - \mathbf{L}_{3.3-11} = 0.00$

t = 10.56 Minutes

LENGTH OF EXFILTRATION TRENCH REQUIRED =	106.75 LF
LENGTH OF EXFILTRATION TRENCH PROVIDED =	147 LF
FACTOR OF SAFETY PROVIDED =	1.38

CONCEPTUAL DRAINAGE CALCULATIONS

Biscayne Park - Phase 1A Drainage Design Criteria Package (NE 113TH STREET)

Village of Biscayne Park, Florida

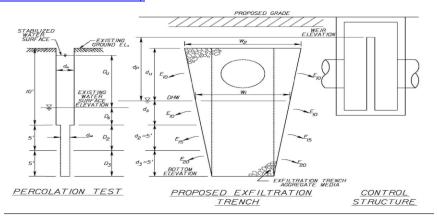
Prepared For:

Village of Biscayne Park

Prepared By:

August 2021

(NE 113 STREET)


DESIGN ELEVATIONS:

Weir Elevation/control elevation = 3 ft NGVD ft
Existing Grade Elevation = 3 NGVD

Design High Water Elevation (DHW) = 1.8 ft NGVD (October Water Table Elevation)

Top of Trench Elevation = 2 ft NGVD

EXFILTRATION RATE CALCULATIONS):

The design high water elevation and the control elevation are within the aggregate

media. E_t =Total exfiltration rate per foot of trench, cfs/LF For 15-ft deep exfiltration trench:

 E_t = 2 K_{10} [du (dp - du/2) + ds dp] + 2 dp d₂ K_{15}

K ₁₀ =	Hydraulic Conductivity at 10 ft depth=	2.49E-04 cfs/ft ² /ft of
K ₁₅ =	Hydraulic Conductivity at 15 ft depth =	2.49E-04 head cfs/ft ² /ft
d1 =	Depth of Trench within 10 ft stratum =	9.00 ofhead ft
d2 =	Depth of Trench within 10-15 foot Stratum =	5 ft
d _p =	Hydraulic Head on Exfiltration trench =	1.2 ft
$d_u =$	Depth of the Unsaturated Zone=	0.2 ft
ds =	Depth of the Saturated Zone=	8.80 ft
E _t =	Total exfiltration rate per LF of trench (Calculated) =	0.0084 cfs/LF
$\mathbf{E_t} =$	Total exfiltration rate per LF of trench (Design) =	0.0084 cfs/LF

(NE 113 STREET)

EXFILTRATION LENGTH CALCULATIONS:

According to the Florida Department of Transportation - District 6 Exfiltration Trench Reference Manual, January 2008 - Ver. 1.08, the Minimum Exfiltration Length Required to meet the Water Quality and Quantity for the design storm shall satisfy the following equations:

$$S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln (t))^3] t$$
Equation 3.3-10 $E_t L = C A_{area} (A + B [ln (t) + 1] + C ln (t) [ln (t) + 2] + D ln (t)^2 [ln (t) + 3]$ Equation 3.3-11

Where:

S = Storage in trench, ft³ per LF of trench

 $S = (Wd_u - A - A_s) \times 0.5 + (A - A_s)$

 $S = (Wd_u - [\pi/4 D^2 - 1/2r^2(\theta/180 - \sin\theta)]) \times 0.5 + [\pi/4 D^2 - 1/2r^2(\theta/180 - \sin\theta)]$

S = Storage in trench per LF of trench =	0.400	ft ³ /LF
A _s = Submerged area of pipe =	1.767	ft ²
A = Available Storage area in perforated pipe =	1.767	ft ²
D = Diameter of perforated pipe =	1.5	ft
W = Average trench width =	4	ft

T_t = Time to generate one inch of runoff plus the time of concentration

```
T<sub>t</sub>=
                                                                                 (2940 F^{-0.11})/(308.5C-60.5(0.5895 + F^{-0.67}))
               T<sub>1"</sub> = Time to generate 1" of runoff, minutes =
               C = Weighted runoff coefficient
                                                                                           0.3 ac
                     Pervious Area (A1)=
                                                                                           0.3 ac
                     Impervious Area (A2)=
                                                                                          0.6 ac
                     Total Area (A3)=
                     Runoff coefficient Pervious (C1) =
                                                                                         0.25
                     Runoff coefficient Impervious (C2) =
                                                                                         0.95
                  C = [(A1 \times C1) + (A2 \times C2)] / A =
                                                                                        0.600
                    = Total Tributary Area = C x A3 =
                                                                                         0.36 ac
                F = Design Storm Frequency =
                                                                                             5 Year
                                                                                        19.11 Minutes
                T_c = Time of concentration or time to reach 1 inlet =
                                                                                            10 Minutes
```

T_t= Time to generate one inch of runoff plus the time of concentration 29.11 Minutes

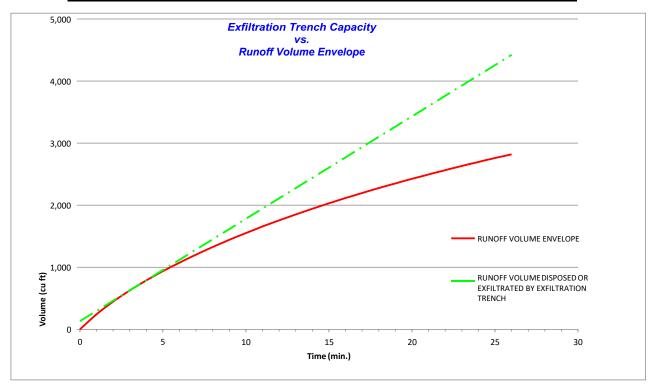
Per Table 3.3-1 Excerpt of Table T-16 from the FDOT Hydrology Handbook - January 2004: Within Rainfall Zone 10, in Miami-Dade County for a 10-year storm frequency, the polynomial coefficients

A= 11.1908 B= -0.93165 C= -0.48526 D= 0.05836

Equation 3.3-10: $S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t$ OR: $L = \{60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t \} / (S + 60 E_t T_t)$

Where: L= Length of Exfiltartion Trench, LF t= Rainfall duration, min

(NE 113 STREET)


Use Excel Solver to find t when $L_{3310} = L_{3311}$

 $L_{3,3-10} = 329.11$ LF $L_{3,3-11} = 329.11$ LF

 $\mathbf{L}_{3.3-10} - \mathbf{L}_{3.3-11} = 0.00$

t = 3.31 Minutes

LENGTH OF EXFILTRATION TRENCH REQUIRED =	329.11 LF
LENGTH OF EXFILTRATION TRENCH PROVIDED =	370 LF
FACTOR OF SAFETY PROVIDED =	1.12

CONCEPTUAL DRAINAGE CALCULATIONS

Biscayne Park - Phase 1A Drainage Design Criteria Package (NE 115TH STREET)

Village of Biscayne Park, Florida

Prepared For:

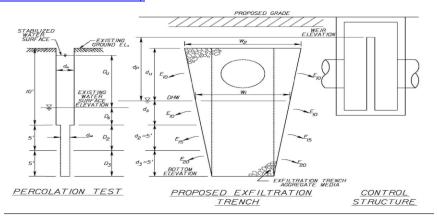
Village of Biscayne Park

Prepared By:

1800 Eller Drive, Suite 600 · Fort Lauderdale, FL 33316 (phone) 954.921.7781 · (fax) 954.266.6487 Certificate of Authorization #514

August 2021

(NE 115 STREET)


DESIGN ELEVATIONS:

Weir Elevation/control elevation = 3 ft NGVD ft
Existing Grade Elevation = 5 NGVD

Design High Water Elevation (DHW) = 1.8 ft NGVD (October Water Table Elevation)

Top of Trench Elevation = 2.5 ft NGVD

EXFILTRATION RATE CALCULATIONS):

The design high water elevation and the control elevation are within the aggregate

media. E_t =Total exfiltration rate per foot of trench, cfs/LF For 15-ft deep exfiltration trench:

 E_t = 2 K_{10} [du (dp - du/2) + ds dp] + 2 dp d₂ K_{15}

K ₁₀ =	Hydraulic Conductivity at 10 ft depth=	1.59E-03 cfs/ft ² /ft of
K ₁₅ =	Hydraulic Conductivity at 15 ft depth =	1.59E-03 head cfs/ft ² /ft
d1 =	Depth of Trench within 10 ft stratum =	7.50 ofhead ft
d2 =	Depth of Trench within 10-15 foot Stratum =	5 ft
d _p =	Hydraulic Head on Exfiltration trench =	1.2 ft
$d_u =$	Depth of the Unsaturated Zone=	0.7 ft
ds =	Depth of the Saturated Zone=	6.80 ft
_E,=	Total exfiltration rate per LF of trench (Calculated) =	0.0469 cfs/LF
$\mathbf{E_t} =$	Total exfiltration rate per LF of trench (Design) =	0.0469 cfs/LF

(NE 115 STREET)

EXFILTRATION LENGTH CALCULATIONS:

According to the Florida Department of Transportation - District 6 Exfiltration Trench Reference Manual, January 2008 - Ver. 1.08, the Minimum Exfiltration Length Required to meet the Water Quality and Quantity for the design storm shall satisfy the following equations:

$$S L + 60 E_t L T_t = 60 C A_{area} [A + B In(t) + C (In(t))^2 + D (In (t))^3] t$$
Equation 3.3-10 $E_t L = C A_{area} (A + B [In \{t\} + 1] + C In \{t\} [In \{t\} + 2] + D In \{t\}^2 [In \{t\} + 3])$ Equation 3.3-11

Where:

S = Storage in trench, ft³ per LF of trench

 $S = (Wd_u - A - A_s) \times 0.5 + (A - A_s)$

 $S = (Wd_u - [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]) \times 0.5 + [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]$

	1.767	ft ²
A = Available Storage area in perforated pipe = A _s = Submerged area of pipe =	1.767 1.767	ft ²
S = Storage in trench per LF of trench =	1 400	ft ³ /LF

 T_t = Time to generate one inch of runoff plus the time of concentration

```
T<sub>t</sub>=
                                                                                (2940 F^{-0.11})/(308.5C-60.5(0.5895 + F^{-0.67}))
              T<sub>1"</sub> = Time to generate 1" of runoff, minutes =
               C = Weighted runoff coefficient
                                                                                          1.5 ac
                     Pervious Area (A1)=
                                                                                          1.5 ac
                     Impervious Area (A2)=
                    Total Area (A3)=
                                                                                           3 ac
                     Runoff coefficient Pervious (C1) =
                                                                                        0.25
                     Runoff coefficient Impervious (C2) =
                                                                                        0.95
                  C = [(A1 \times C1) + (A2 \times C2)] / A =
                                                                                      0.600
                                                                                         1.8 ac
                   = Total Tributary Area = C x A3 =
                F = Design Storm Frequency =
                                                                                           5 Year
                                                                                       19.11 Minutes
               T_c = Time of concentration or time to reach 1 inlet =
                                                                                          10 Minutes
T_t= Time to generate one inch of runoff plus the time of concentration
                                                                                      29.11 Minutes
```

Per Table 3.3-1 Excerpt of Table T-16 from the FDOT Hydrology Handbook - January 2004:

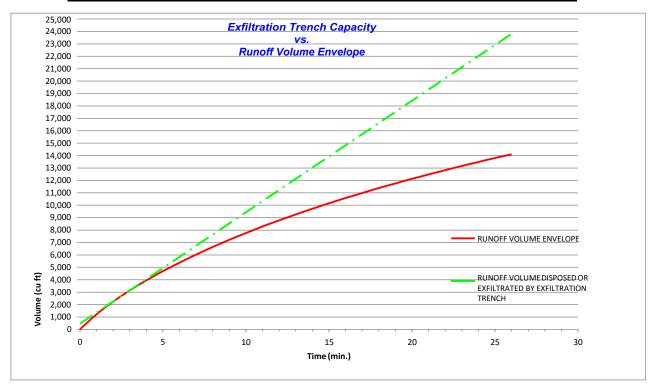
Within Rainfall Zone 10, in Miami-Dade County for a 10-year storm frequency, the polynomial coefficients

A= 11.1908 B= -0.93165 C= -0.48526 D= 0.05836

Equation 3.3-10: $SL + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3]t$ OR: $L = \{60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3]t\} / (S + 60 E_t T_t)$

Where: L= Length of Exfiltartion Trench, LF

(NE 115 STREET)


Use Excel Solver to find t when $L_{3310} = L_{3311}$

L_{3,3-10} = 319.17 LF L_{3,3-11} = 319.17 LF

 $\mathbf{L}_{3.3-10} - \mathbf{L}_{3.3-11} = 0.00$

t = 2.48 Minutes

LENGTH OF EXFILTRATION TRENCH REQUIRED =	319.17 LF
LENGTH OF EXFILTRATION TRENCH PROVIDED =	516 LF
FACTOR OF SAFETY PROVIDED =	1.62

CONCEPTUAL DRAINAGE CALCULATIONS

Biscayne Park - Phase 1A Drainage Design Criteria Package (NE 121st STREET)

Village of Biscayne Park, Florida

Prepared For:

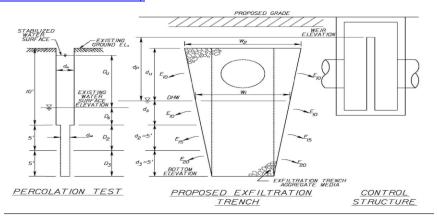
Village of Biscayne Park

Prepared By:

August 2021

(NE 121 ST)

DESIGN ELEVATIONS:


 Weir Elevation/control elevation
 =
 2 ft NGVD ft

 Existing Grade Elevation
 =
 3 NGVD

 Design High Water Elevation (DHW)
 =
 1.8 ft NGVD (October Water Table Elevation)

Top of Trench Elevation = 1.8 ft NGVD

EXFILTRATION RATE CALCULATIONS):

The design high water elevation and the control elevation are within the aggregate

 $media. \ E_t = Total \ exfiltration \ rate \ per foot \ of \ trench, \ cfs/LF$ For 15-ft deep exfiltration trench:

 E_t = 2 K_{10} [du (dp - du/2) + ds dp] + 2 dp d₂ K_{15}

K ₁₀ =	Hydraulic Conductivity at 10 ft depth=	7.27E-04 cfs/ft²/ft of
K ₁₅ =	Hydraulic Conductivity at 15 ft depth =	7.27E-04 head cfs/ft ² /ft
d1 =	Depth of Trench within 10 ft stratum =	8.80 ofhead ft
d2 =	Depth of Trench within 10-15 foot Stratum =	5 ft
d _p =	Hydraulic Head on Exfiltration trench =	0.2 ft
$d_u =$	Depth of the Unsaturated Zone=	0 ft
ds =	Depth of the Saturated Zone=	8.80 ft
E _t =	Total exfiltration rate per LF of trench (Calculated) =	0.0040 cfs/LF
$\mathbf{E_t} =$	Total exfiltration rate per LF of trench (Design) =	0.0040 cfs/LF

(NE 121 ST)

EXFILTRATION LENGTH CALCULATIONS:

According to the Florida Department of Transportation - District 6 Exfiltration Trench Reference Manual, January 2008 - Ver. 1.08, the Minimum Exfiltration Length Required to meet the Water Quality and Quantity for the design storm shall satisfy the following equations:

$$S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln (t))^3] t$$
Equation 3.3-10 $E_t L = C A_{area} (A + B [ln \{t\} + 1] + C ln \{t\} [ln \{t\} + 2] + D ln \{t\}^2 [ln \{t\} + 3])$ Equation 3.3-11

Where:

S = Storage in trench, ft³ per LF of trench

 $S = (Wd_u - A - A_s) \times 0.5 + (A - A_s)$

 $S = (Wd_u - [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]) \times 0.5 + [\pi/4 D^2 - 1/2r^2 (\theta/180 - \sin\theta)]$

W = Average trench width =	4	ft
D = Diameter of perforated pipe =	1.5	ft
A = Available Storage area in perforated pipe =	1.767	ft ²
A _s = Submerged area of pipe =	1.767	ft ²
S = Storage in trench per LF of trench =	0.000	ft ³ /LF

 T_t = Time to generate one inch of runoff plus the time of concentration

 T_t = Time to generate one inch of runoff plus the time of concentration

$T_t =$	$T_{1"} + T_{c}$	
	T _{1"} = Time to generate 1" of runoff, minutes =	(2940 F ^{-0.11})/ (308.5C -60.5 (0.5895 +F ^{-0.67})
	C = Weighted runoff coefficient	
	Pervious Area (A1)=	0.07 ac
	Impervious Area (A2)=	0.07 ac
	Total Area (A3)=	0.14 ac
	Runoff coefficient Pervious (C1) =	0.25
	Runoff coefficient Impervious (C2) =	0.95
	C = [(A1 x C1) + (A2 x C2)] / A =	0.600
	A _{area} = Total Tributary Area = C x A3 =	0.084 ac
	F = Design Storm Frequency =	5 Year
	T _{1"} =	19.11 Minutes
	T_c = Time of concentration or time to reach 1 inlet =	10 Minutes

Per Table 3.3-1 Excerpt of Table T-16 from the FDOT Hydrology Handbook - January 2004:

Within Rainfall Zone 10, in Miami-Dade County for a 10-year storm frequency, the polynomial coefficients

29.11 Minutes

A= 11.1908 B= -0.93165 C= -0.48526 D= 0.05836

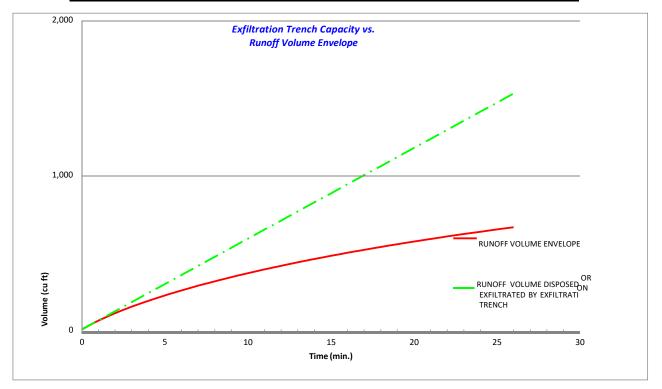
Equation 3.3-10: $S L + 60 E_t L T_t = 60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t$ OR: $L = \{60 C A_{area} [A + B ln(t) + C (ln(t))^2 + D (ln(t))^3] t \} / (S + 60 E_t T_t)$

Equation 3.3-11: $E_t L = C A_{area} (A + B [ln \{t\} + 1] + C ln \{t\} [ln \{t\} + 2] + D ln \{t\}^2 [ln \{t\} + 3]) OR:$

 $L = \left\{ C \; A_{area} \left(A + B \; [ln \; \{t\} + 1] + C \; ln \; \{t\} \; [ln \; \{t\} + 2] + D \; ln \{t\}^2 \; [ln \{t\} + 3]) \right\} / \; E_t$

Where: L= Length of Exfiltartion Trench, LF

(NE 121 ST)


Use Excel Solver to find t when $L_{3310} = L_{3311}$

L_{3,3-10}= 242.73 LF L_{3,3-11}= 242.73 LF

 $\mathbf{L}_{3.3-10} - \mathbf{L}_{3.3-11} = 0.00$

t = 0.43 Minutes

LENGTH OF EXFILTRATION TRENCH REQUIRED =	242.73 LF
LENGTH OF EXFILTRATION TRENCH PROVIDED =	102 LF
FACTOR OF SAFETY PROVIDED =	0.42

